Using halves. Stg 5

Halves, for some reason, are the easiest fraction for folks to get their heads around. If someone asks you to chop a muffin in half to share with your sister/brother - and they choose - you can bet your halving will be microscopically accurate. On that note, have a look at these shapes - Use a ruler to see if you can draw a line through that chops them exactly in half. - Both sides must be equal. (You might find there is more than one way to chop it up - just choose one)

Let's have a closer look at what a half is as a number. It's kind of special in that it has its own name for a start there's no such thing as 'twoths'! (Although there should be, it sounds awesome).

N.B. Halves can be shown as a decimal or a percentage as well: $\frac{1}{2}=\div 2=0.5=50 \%$ Here's a question though - can you have halves of numbers or sets? Well, of course you can! Any even number can easily be halved - try halving some of these cheeky little fellas here:

$1 / 2$ of $6=$ \qquad

$1 / 2$ of $8=$ \qquad

$1 / 2$ of $16=$ \qquad

OK, this time without pictures: (You can use counters if you get stuck)

1. $1 / 2$ of $18=$ \qquad 2. $1 / 2$ of $20=$ \qquad 3. $1 / 2$ of $26=$ \qquad
2. $1 / 2$ of $28=$ \qquad
3. $1 / 2$ of $14=$ \qquad
4. $1 / 2$ of $28=$ \qquad
5. $1 / 2$ of $4=$ \qquad 8. $1 / 2$ of $46=$ \qquad
6. $1 / 2$ of $42=$ \qquad

Using halves. Stg E6 props \& rats

\qquad
The many names of half - when we were chopping numbers in half, a thought may have occurred to you - if $/$ can say 4 is half of 8 (for example) can I also say that $4 / 8$ ths is the same as $1 / 2$? How very insightful, you clever thing! Yes, you can say that. These are called 'equivalent fractions'. See if you can figure out whether these fractions are equivalent to $1 / 2$ or not: (Tip: odd numbers are tricky to halve)

Here's a thought. Can you have a fraction that is more than one whole? You sure can, but naturally, you need another whole. We know 2 halves ($2 / 2$) is the whole thing. So what would $\mathbf{3 / 2}$ look like? The circles are still chopped into halves, but now there is a whole circle plus another piece.

Shade

Shade

Shade

Shade

I could also figure out how many halves would be in a mixed fraction.
Say I had $\mathbf{1}$ and $1 / 2$ pies. How many halves is that? I can see $\mathbf{1} / 2$, and I know there are $\mathbf{2}$ halves in the whole pie. So $\mathbf{2 + 1}=\mathbf{3}$. There are $\mathbf{3}$ halves, or $3 / 2$
a. $\quad 21 / 2=(4 / 2+1 / 2)=$ \qquad (Tip: when adding fractions, leave the denominator, just add the tops)
b. $31 / 2=(6 / 2+1 / 2)=$ \qquad (Show your answers as an improper fraction)
c. $51 / 2=(10 / 2+1 / 2)=$ \qquad
d. $71 / 2=(14 / 2+1 / 2)=$ \qquad
e. $42 / 2=(8 / 2+2 / 2)=$ \qquad
Slightly useless fact: In the old days to 'halve' something simply meant to divide it up. Now we use it to talk about splitting something into precisely 2 equal parts

