## Using 5ths. Stg 5/E6 props \& rats N Name:

$\qquad$
Coming to grips with fifths is a great idea, they're quite handy and look good on the mantlepiece. They are reasonably easy to deal with too, because it's a similar skill to dividing by 5

Colour in these fractions: (Neatly please, not just a scribble. Or Ill bite you)




Now, let's try chopping up some sets. We know how this goes! Circle the fraction of each set as indicated:

$$
1 / 5 \text { of } 10=
$$


$1 / 5$ of $15=$

$2 / 5$ of $15=$ $\qquad$

$1 / 5$ of $20=$ $\qquad$

OK, this time without pictures: (Use the force Luke! Or, you can try counters if you get stuck) Remember, once you've worked out 1 fifth, just multiply that number by the numerator - the top number. For example: $1 / 5$ of $55=11$, so $2 / 5$ of 55 must be 22 because $2 \times 11=22$, and so $4 / 5$ of $55=44$ because $4 \times 11=44$.

1. $1 / 5$ of $10=$ $\qquad$ 2. $2 / 5$ of $10=$ $\qquad$ 3. $3 / 5$ of $10=$ $\qquad$
2. $1 / 5$ of $25=$ $\qquad$ 5. $3 / 5$ of $25=$ $\qquad$ 6. $4 / 5$ of $25=$ $\qquad$
3. $1 / 5$ of $50=$ $\qquad$ 8. $2 / 5$ of $50=$ $\qquad$ 9. $3 / 5$ of $50=$ $\qquad$
4. $1 / 5$ of $30=$ $\qquad$
5. $1 / 5$ of $35=$
$\qquad$
6. $3 / 5$ of $30=$
7. $4 / 5$ of $30=$ $\qquad$
8. $2 / 5$ of $35=$ $\qquad$ 15. $3 / 5$ of $35=$ $\qquad$
9. $1 / 5$ of $40=$ $\qquad$ 17. $3 / 5$ of $40=$ $\qquad$ 18. $4 / 5$ of $40=$ $\qquad$
10. $1 / 5$ of $60=$ $\qquad$
11. $2 / 5$ of $60=$ $\qquad$
12. $4 / 5$ of $60=$ $\qquad$
'One fifth' in Te Reo Māori is Kotahi haurima. 'Two fifths' is rya haurima, $3 / 5=$ tor haurima, 4/5 = whā haurima

## Using 5ths. Stg 6 props \& rats

Name: $\qquad$
Proper and improper fractions: Sometimes we deal with fractions that show more than 1 full set or whole. There are 2 ways to show these numbers. Take six fifths for example:

1. A proper fraction shows the whole, plus whatever is left over: $11 / 5=$
2. An improper fraction shows all of the parts in the numerator.


So all we need to know when we need to find out how many fifths are in a number, is how many fifths fit into 1 whole. (5 of them, duh) So let's try a few, after this sponsors message:
E.g 8 fifths fit into $13 / 5$ because $5(1 \times 5)+3=8$

1. $\qquad$ fifths fit into $21 / 5$ $\qquad$ $(2 \times 5)+1=$ $\qquad$
Then, convert these improper fractions into proper, decent law abiding fractions:
2. $7 / 5=$ $\qquad$ (just divide by 5!)
3. $\qquad$ fifths fit into $13 / 5$ $\qquad$ $(1 \times 5)+3=$ $\qquad$
4. $\qquad$ fifths fit into 34/5 $\qquad$ $(3 \times 5)+4=$ $\qquad$
5. $\qquad$ fifths fit into $52 / 5$ $\qquad$ $(5 \times 5)+2=$ $\qquad$
6. $\qquad$ fifths fit into $71 / 5$ $\qquad$ $(7 \times 5)+1=$ $\qquad$
7. $10 / 5=$
$\qquad$
8. $12 / 5=$ $\qquad$
9. $9 / 5=$ $\qquad$
10. $23 / 5=$ $\qquad$

I bet you're wondering now, how do I turn fifths into decimals? Actually it's pretty easy. $\mathbf{1} \div 5=\mathbf{0 . 2}$, so every $1 / 5=0.2$-then $2 / 5=0.4$ and $3 / 5=0.6$ and $4 / 5=0.8$ - So, we can Multiply by these decimals in the same way we use fractions. E.g $\mathbf{0 . 2 \times 1 0 = 2}$ (because $1 / 5$ of $10=2$ ) ' $\mathbf{x}$ ' = 'of' with fractions.
a. $0.2 \times 15=3$
b. $15 \times 0.4=$ $\qquad$ c. $0.6 \times 15=$ $\qquad$
d. $25 \times 0.2=$ $\qquad$ e. $0.6 \times 25=$ $\qquad$ f. $25 \times 0.8=$ $\qquad$
g. $0.2 \times 30=$ $\qquad$ h. $30 \times 0.4=$ $\qquad$ i. $0.6 \times 30=$ $\qquad$

Similarly, we can divide strange numbers by 5 to get a decimal answer:
j. $6 \div 5=1.2$
k. $12 \div 5=$ $\qquad$ I. $7 \div 5=$ $\qquad$
m. $9 \div 5=$ $\qquad$ n. $11 \div 5=$ $\qquad$ o. $17 \div 5=3$. $\qquad$
p. $21 \div 5=$ $\qquad$
q. $14 \div 5=$ $\qquad$ r. $24 \div 5=$ $\qquad$

Here's a thing: 5ths and 10ths are kind of related! There are $\mathbf{2}$ tenths in every $5^{\text {th }}$. So we can easily simplify tenths into fifths! (supposing they're even numerators) Try some here:

1. $8 / 10=4 / 5$ (Just halve both numbers)
2. $2 / 10=$ $\qquad$ /
3. $6 / 10=\ldots / \ldots$
4. $10 / 10=$ $\qquad$ 5. $12 / 10=$ $\qquad$

Cinco de Mayo—or the fifth of May—commemorates the Mexican army's 1862 victory over France at the Battle of Puebla during the Franco-Mexican War (1861-1867). http://www.history.com/topics/holidays/cinco-de-mayo
$\qquad$
How to find a fifth of any number. Finding a fifth is the same as dividing by 5 , much like the other types of division you know already - we can use standard form fast long division. So, let's have a go at finding a fifth of these interesting numbers. Remember to keep your place value, look out for decimals!
a. $5 \longdiv { 7 8 . 4 5 }$
b. $5 \longdiv { 1 0 . 3 0 }$
c. $5 \longdiv { 4 5 6 . 5 }$
d. $5 \longdiv { 2 . 9 1 5 }$
e. $5 \longdiv { 5 2 2 8 0 }$
f. $5 \longdiv { 3 9 6 6 5 }$
g. $5 \longdiv { 4 8 2 5 7 0 0 }$
h. $5 \longdiv { 3 1 . 6 5 }$
i. $5 \longdiv { 1 5 . 1 5 }$
j. $5 \longdiv { 6 5 . 3 0 }$
k. $5 \longdiv { 1 . 0 0 5 }$

All well and good, I hear you say, but what if I need 2 fifths of any number? Or 4 fifths? Hmm, What then clever clogs? Well, here is the good news: to find 2 fifths, all you have to do is double the answer to $\mathbf{1}$ fifth! E.g:

I. Find $2 / 5$ of $9 3 . 5 5 \longdiv { 9 3 . 5 } \frac { x \quad 2 } { = } \quad \begin{array} { l } { \text { Write out these ones in your } } \\ { \text { maths book: } } \end{array}$

1. Find $2 / 5$ of 1680
2. Find $3 / 5$ of 37.375
3. Find $4 / 5$ of 7095
4. Find $2 / 5$ of 5.690
5. Find $3 / 5$ of 7405
6. Find $4 / 5$ of 77.035
7. Find $2 / 5$ of 2080
8. Find $3 / 5$ of 47.70
9. Find $4 / 5$ of 3705
10. Find $2 / 5$ of 95.75

Fifth Avenue is a major thoroughfare going through Manhattan in New York City, United States. It is considered among the most expensive and best shopping streets in the world. https://en.wikipedia.org/wiki/Fifth_Avenue

