Using 4ths. Stg 5/E6 props \& rats

\qquad
We know that fractions show a whole or a set that has been sliced into equal parts. Fourths are the same, and they even have their own special name - quarters! Quarters are fairly easy to deal with, because you can halve a half to get them. (The word 'quarter' comes from the ancient Latin word 'Quartus').

Colour in these fractions: (But don't use yellow. Yellow's yuck)

Now, let's try chopping up some sets! The idea is the same, but you end up with 4 smaller equal groups within your original number. By equal sharing, you can quickly see that 8 things put into 4 groups, gives you 2 in each sub-set. We know how this goes! Let's try for ourselves:
$1 / 4$ of $8=2$

$1 / 4$ of $12=$ $3 / 4$ of $12=$ \qquad $2 / 4$ of $16=$
$1 / 4$ of $20=$ \qquad

OK, this time without pictures: (Ok, I must admit, these are quite a bit harder, but I trust you - You can do it! You can use counters if you get stuck)

1. $1 / 4$ of $16=$ \qquad
2. $2 / 4$ of $16=$ \qquad 3. $3 / 4$ of $16=$ \qquad
3. $1 / 4$ of $24=$ \qquad 5. $2 / 4$ of $24=$ \qquad 6. $3 / 4$ of $24=$ \qquad
4. $1 / 4$ of $28=$ \qquad 8. $2 / 4$ of $28=$ \qquad 9. $3 / 4$ of $28=$ \qquad
5. $1 / 4$ of $32=$ \qquad 11. $2 / 4$ of $32=$ \qquad 12. $3 / 4$ of $32=$ \qquad
6. $1 / 4$ of $36=$ \qquad
7. $2 / 4$ of $36=$ \qquad 15. $3 / 4$ of $36=$ \qquad
8. $1 / 4$ of $40=$ \qquad 17. $2 / 4$ of $40=$ \qquad 18. $3 / 4$ of $40=$ \qquad
'One quarter' in Te Reo Māori is Kotahi hauwhā. 'Three quarters' is toru hauwhā

Using 4ths. Stg 6 props \& rats

Remember, fractions and division are very much alike, but fractions get more interesting because you can talk about more than just one part. We already know, for example that $1 / 4$ of 12 is 3 , and so if you have $3 / 4$ of 12 , it must be 9 , because $\mathbf{3 \times 3 = 9}$. The numerator (top number) tells you how many parts of the number you get. So what would $\mathbf{5 / 4}$ of $\mathbf{1 2}$ look like? The number 12 is still chopped into quarters, but now there is a whole set plus another piece. The quick way to do this is to just multiply the numerator by whatever the unit fraction comes to. The unit fraction $\left(1 / 4^{\text {th }}\right)$ of 12 is $\mathbf{3}$. So $\mathbf{5} / 4$ ths is simply $\mathbf{5} \times \mathbf{3}=\mathbf{1 5}$. Trust me it's easier than it sounds:

1. $1 / 4$ of $16=$ \qquad 2. $5 / 4$ of $16=$ \qquad 3. $7 / 4$ of $16=$ \qquad
2. $1 / 4$ of $24=$ \qquad 5. $5 / 4$ of $24=$ \qquad
3. $7 / 4$ of $24=$ \qquad
4. $1 / 4$ of $32=$ \qquad
5. $5 / 4$ of $32=$ \qquad
6. $7 / 4$ of $32=$ \qquad

Do you reckon it's possible to add and subtract fractions? I'd say so - Remember, when adding fractions with the same denominator, just leave it the same - just use the numerator. Super easy. E.g.

$$
\frac{1}{4}+\frac{2}{4}=\frac{3}{4} \quad \begin{aligned}
& \text { Really, all we're doing is some very basic maths! } 1+2=3 \text {. Even your teacher can } \\
& \text { do that! Supposing they've had enough coffee. }
\end{aligned}
$$

a. $2 / 4+2 / 4=$ \qquad b. $1 / 4+1 / 4=$ \qquad C. $3 / 4+1 / 4=$ \qquad
d. $3 / 4+3 / 4=$ \qquad e. $2 / 4+3 / 4=$ \qquad f. $3 / 4+5 / 4=$ \qquad
g. $3 / 4-1 / 4=$ \qquad
h. $5 / 4-3 / 4=$ \qquad
i. $7 / 4-4 / 4=$ \qquad

As you can see, sometimes you end up with fractions with a larger numerator than denominator. These, as we know, are called 'improper' fractions. So then, what is a 'proper' fraction? That's when we write any sets that can be made complete into whole numbers. (What on Earth...?) Take 4/4ths when you have the full set, it's the same as saying you have 1 whole thing. So $4 / 4=1$. That means we can simplify improper fractions to show wholes as well. E.g $7 / 4$ is the same as 1 and $3 / 4$, or $13 / 4(4 / 4+3 / 4)$

Try some, I think you'll enjoy the smooth flavour:

$6 / 4=(4 / 4+2 / 4)=$ \qquad $8 / 4=(4 / 4+4 / 4)=$ \qquad $7 / 4=(4 / 4+3 / 4)=$
\qquad
$9 / 4=(4 / 4+4 / 4+1 / 4)=$ \qquad $11 / 4=(4 / 4+4 / 4+3 / 4)=$ \qquad $5 / 4=$ \qquad 10/4 = \qquad $12 / 4=$ \qquad $16 / 4=$ \qquad
You doin' OK buddy? Good! I bet you're wondering now, how do I turn quarters into decimals? Actually it's pretty easy. $1 \div 4=0.25$, so every $1 / 4=0.25$ - then $2 / 4=0.5$ and $3 / 4=0.75-$ So, we can Multiply by these decimals in the same way we use fractions. E.g $\mathbf{0 . 2 5 \times 1 2 = 3}$ (because $1 / 4$ of $12=3$) ' \mathbf{x} ' = 'of' with fractions.
a. $0.25 \times 16=$ \qquad b. $0.5 \times 16=$ \qquad c. $0.75 \times 16=$ \qquad
d. $0.25 \times 24=$ \qquad e. $0.5 \times 24=$ \qquad f. $0.75 \times 24=$ \qquad
g. $0.25 \times 32=$ \qquad
h. $0.5 \times 32=$ \qquad
i. $0.75 \times 32=$ \qquad

