Using 4ths. Stg 5/E6 orops & rats Mame: ____

We know that fractions show a whole or a set that has been sliced into equal parts. Fourths are the same, and they even have their own special name – **quarters**! Quarters are fairly easy to deal with, because you can halve a half to get them. (The word 'quarter' comes from the ancient Latin word 'Quartus').

The number on top - 'the numerator' says you are dealing with **1** part. The 'denominator' tells you that it has been chopped into **4** parts

Colour in these fractions: (But don't use yellow. Yellow's yuck)

Now, let's try chopping up some sets! The idea is the same, but you end up with 4 smaller equal groups within your original number. By equal sharing, you can quickly see that 8 things put into 4 groups, gives you 2 in each sub-set. We know how this goes! Let's try for ourselves: 1/4 of 8 =

1/4 of 12 =

3/4 of 12 = ___

2/4 of 16 = ___

1/4 of 20 = ___

OK, this time without pictures: (Ok, I must admit, these are quite a bit harder, but I trust you – You can do it! You can use counters if you get stuck)

1. 1/4 of 16 =	2. 2/4 of 16 =	3. 3/4 of 16 =
4. 1/4 of 24 =	5. 2/4 of 24 =	6. 3/4 of 24 =
7. 1/4 of 28 =	8. 2/4 of 28 =	9. 3/4 of 28 =
10. 1/4 of 32 =	11. 2/4 of 32 =	12. 3/4 of 32 =
13. 1/4 of 36 =	14. 2/4 of 36 =	15. 3/4 of 36 =
16. 1/4 of 40 =	17. 2/4 of 40 =	18. 3/4 of 40 =

'One quarter' in Te Reo Māori is Kotahi hauwhā. 'Three quarters' is toru hauwhā

Dave Moran 2015

Using 4ths.

Name:

Remember, fractions and division are very much alike, but fractions get more interesting because you can talk about **more** than just one part. We already know, for example that **1/4 of 12 is 3**, and so if you have $\frac{3}{4}$ of **12**, it must be **9**, because **3** x **3** = **9**. The numerator (top number) tells you how many parts of the number you get. So what would **5/4 of 12** look like? The number 12 is still chopped into quarters, but now there is a whole set plus another piece. The quick way to do this is to just multiply the numerator by whatever the unit fraction comes to. The unit fraction ($1/4^{th}$) of 12 is **3**. So **5**/4ths is simply **5** x **3** = **15**. Trust me it's easier than it sounds:

1. 1/4 of 16 =	2. 5/4 of 16 =	3. 7/4 of 16 =
4. 1/4 of 24 =	5. 5/4 of 24 =	6. 7/4 of 24 =
7. 1/4 of 32 =	8. 5/4 of 32 =	9. 7/4 of 32 =

Do you reckon it's possible to **add and subtract fractions**? I'd say so – Remember, when adding fractions with the same denominator, just leave it the same – just use the numerator. Super easy. E.g.

$\frac{1}{4} + \frac{2}{4} = \frac{3}{4}$ Read do t	Really, all we're doing is some very basic maths! 1 + 2 = 3. Even your teacher can do that! Supposing they've had enough coffee.	
a. 2/4 + 2/4 =	b. ¼ + ¼ =	C. $\frac{3}{4} + \frac{1}{4} = $
d. ³ ⁄ ₄ + ³ ⁄ ₄ =	e. 2/4 + ¾ =	f. ¾ + 5/4 =
g. ¾ - ¼ =	h. 5/4 − ¾ =	i. 7/4 – 4/4 =

As you can see, sometimes you end up with fractions with a larger numerator than denominator. These, as we know, are called 'improper' fractions. So then, what is a 'proper' fraction? That's when we write any sets that can be made complete into whole numbers. (*What on Earth...?*) Take **4/4ths** when you have the full set, it's the same as saying you have **1** whole thing. So **4/4** = **1**. That means we can **simplify** improper fractions to show wholes as well. E.g **7/4** is the same as **1** and **3**/4, or **1**/3/4 (4/4 + 3/4)

Try some, I think you'll enjoy the smooth flavour:

6 /4 = (4/4 + 2/4) =	8 /4 = (4/4 + 4/4) =	7 /4 = (4/4 + 3/4) =
9 /4 = (4/4 + 4/4 + 1/4) =	11 /4 = (4/4 + 4	/4 + 3/4) =
5 /4 = 10 /4 =	12 /4 =	16 /4 =

You doin' OK buddy? Good! I bet you're wondering now, how do I turn quarters into decimals? Actually it's pretty easy. $1 \div 4 = 0.25$, so every $\frac{1}{4} = 0.25 - \text{then } 2/4 = 0.5$ and $\frac{3}{4} = 0.75 - \text{So}$, we can Multiply by these decimals in the same way we use fractions. E.g $0.25 \times 12 = 3$ (because 1/4 of 12 = 3) ' \mathbf{x} ' = 'of' with fractions.

a. 0.25 x 16 =	b. 0.5 x 16 =	c. 0.75 x 16 =
d. 0.25 x 24 =	e. 0.5 x 24 =	f. 0.75 x 24 =
g. 0.25 x 32 =	h. 0.5 x 32 =	i. 0.75 x 32 =