\qquad
Like any fraction, thirds show a whole thing or number that has been chopped up into 3 equal parts. Like the pie shown below - it is one whole pie, but has been cut into 3 delicious slices. You can choose to have 1 piece of pie - the fraction would look like this: $1 \longleftarrow$ the number on top says you have 1 piece.
$3 \longleftarrow$ The bottom number tells you that it has been chopped into $\mathbf{3}$ parts... But, what if you are really hungry? Perhaps you could eat $\mathbf{2}$ pieces of pie! Well, then the fraction looks a little different:
$\frac{2}{3} \longleftarrow$ This time you have $\mathbf{2}$ parts of the pie (the top number is the 'numerator')

Let's have a little practice. Colour the fractions shown, in the shapes below:

Ok, so thirds of a whole thing are pretty easy to understand. Yes they are! What about finding out what thirds of sets are, or numbers bigger than 1? For example, if I have 6 biscuits for morning tea. My 2 friends and I (3 of us altogether) want to share them out equally. We can chop our set of 6 into 3 smaller groups using thirds.

$1 / 3$ of $6=2$
By equal sharing, I can quickly see that 6 biscuits put into 3 groups, gives me 2 in each. My friends and I would get 2 bikkies each! Yum.

Righto mighty maths midgets, let's have a go:

$1 / 3$ of $9=$

$1 / 3$ of $15=$ \qquad

$1 / 3$ of $21=$

OK, this time without pictures: (You can use counters if you get stuck)

1. $1 / 3$ of $18=$ \qquad 2. $1 / 3$ of $24=$ \qquad 3. $1 / 3$ of $33=$ \qquad
2. $1 / 3$ of $27=$ \qquad 5. $1 / 3$ of $3=$ \qquad 6. $1 / 3$ of $30=$ \qquad
3. $1 / 3$ of $9=$ \qquad
4. $1 / 3$ of $15=$ \qquad
5. $1 / 3$ of $12=$ \qquad

Using 3rds. Stg 6 props \& rats

\qquad
Fractions and division are like close cousins in the family of maths - they both talk about chopping numbers up into smaller equal groups. Where division can show you $1 / 3^{\text {rd }}$ of something by dividing by 3 , a fraction can show $2 / 3^{\text {rds }}$ or even $3 / 3^{\text {rds }}$ (a whole)- very handy

For example: We know that $\mathbf{3 3} \div \mathbf{3}=\mathbf{1 1}$. So then we can easily say that $\mathbf{1 / 3} \mathbf{3}^{\text {rd }}$ of $\mathbf{3 3}$ is also $\mathbf{1 1}$. - It's the same thing, only written down differently. But what if the number on top of the fraction (the numerator) is bigger? Like $\mathbf{2} / \mathbf{3}^{\text {rds }}$ of $\mathbf{3 3}$? Well, we are still chopping up 33 into 3 parts, but we are talking about more of the parts than just one.

$$
\text { So if } 1 / 3^{\text {rd }} \text { of } 33=11 \ldots \quad 2 / 3^{\text {rd }} \text { of } 33=(2 \times 11)=22
$$

Let's try a few for ourselves:

1. $1 / 3$ of $12=$ \qquad
2. $1 / 3$ of $33=$ \qquad
3. $1 / 3$ of $6=$ \qquad
4. $1 / 3$ of $27=$ \qquad
5. $1 / 3$ of $24=$ \qquad
6. $1 / 3$ of $21=$ \qquad
7. $1 / 3$ of $18=$ \qquad
8. $1 / 3$ of $15=$ \qquad so $2 / 3$ of $12=(2 x$ \qquad) $=$ \qquad
\qquad
so
$2 / 3$ of $33=(2 x \ldots+\quad)=$ \qquad
$2 / 3$ of $6=(2 x \ldots)=$ \qquad
$2 / 3$ of $27=(2 x$ \qquad) = \qquad
$2 / 3$ of $24=(2 x$ \qquad) = \qquad
$2 / 3$ of $21=(2 x$ \qquad) $=$ \qquad
$2 / 3$ of $18=(2 x$ \qquad) = \qquad $2 / 3$ of $15=\left(2 x_{\text {___ }}\right)=$
\qquad
9. $1 / 3$ of $9=$ \qquad
$2 / 3$ of $9=(2 x$ \qquad) $=$ \qquad
10. $1 / 3$ of $30=$ \qquad $2 / 3$ of $30=(2 x$ \qquad) = \qquad
Here's a thought. Can you have a fraction that is more than one whole pie? You sure can, but naturally, you need another pie. We know 3 thirds (3/3) is the whole thing. So what would $5 / 3$ look like? The pies are still chopped into thirds, but now there is a whole pie plus another few pieces.
Shade

Shade

$\infty 0$ Shade

Shade

I could also figure out how many thirds would be in a mixed fraction.
Say I had $\mathbf{1}$ and $1 / 3$ pies. How many thirds is that? I can see $\mathbf{1 / 3}$, and I know there are $\mathbf{3}$ thirds in the whole pie. So $3+1=4$. There are $4 / 3$
a. $\quad 12 / 3=(3 / 3+2 / 3)=$ \qquad (Tip: when adding fractions, leave the denominator, just add the tops)
b. $\quad 21 / 3=(6 / 3+1 / 3)=$ \qquad (Show your answers as an improper fraction)
c. $31 / 3=(9 / 3+1 / 3)=$ \qquad (To get 9/3, you just go 3×3)
d. $\quad 11 / 3=(3 / 3+1 / 3)=$ \qquad
e. $42 / 3=(12 / 3+2 / 3)=$ \qquad The Denominator. He'll be back.

