\qquad
By now, you have likely learned your 5 x table up to 12 many times since you started school. You have skip-counted and memorised them and they should be simple for you now! Here are some handy tips for figuring out all sorts of harder $5 x$ table questions:

Tip 1: every number in the 5 x table ends in either $\mathbf{0}$ or $\mathbf{5}$ - your answer should too.
Tip 2: To figure out any $5 x$ table question, we can firstly multiply it by 10, then divide by 2 or halve that number (or, halve it first then multiply by 10 , it's the same thing). This works because $\mathbf{5}=10 \div 2$. For example, try $5 \times 23=? ?$? Tricky, right? Have a look at this:
E.g. $\mathbf{2 3} \times 10=230$. Half of $230=115$. So then $\mathbf{5 \times 2 3}=\mathbf{1 1 5}$! Not so tricky after all!

Or $48 \times 5=$??? You could halve it first: half of $\mathbf{4 8}=24,24 \times 10=240 \ldots$ so $\mathbf{4 8} \times \mathbf{5}=\mathbf{2 4 0}$!
So, now try some for yourself:

1. $37 \times 5=$ \qquad . Working: $37 \times 10=$ \qquad $1 / 2$ of $370=$ \qquad
2. $5 \times 26=$ \qquad . Working: $1 / 2$ of $26=$ \qquad $13 \times 10=$ \qquad
3. $41 \times 5=$ \qquad . Working: $41 \times 10=$ \qquad , then $1 / 2$ it $=$ \qquad
4. $5 \times 66=$ \qquad . Working: $66 \div 2=$ \qquad , then $\times 10=$ \qquad
5. $84 \times 5=$ \qquad . Working: $1 / 2$ of $84=$ \qquad , then $\times 10=$ \qquad
6. $5 \times 48=$ \qquad . Working: $48 \times 10=$ \qquad , then $1 / 2$ it $=$ \qquad
7. $32 \times 5=$ \qquad . Working: $32 \times 10=$ \qquad , then $1 / 2$ it $=$ \qquad
8. $5 \times 52=$ \qquad . Working: $52 \times 10=$ \qquad , then $1 / 2$ it $=$ \qquad
9. $82 \times 5=$ \qquad . Working: $82 \div 2=$ \qquad , then $\times 10=$ \qquad
10. $5 \times 27=$ \qquad . Working: $27 \times 10=$ \qquad , then $1 / 2$ it $=$ \qquad
Q. Why is it easier to halve even numbers? \qquad

What about harder ones? The strategy still works! - Try:

1. $246 \times 5=$ \qquad : first, $1 / 2$ of $246=$ \qquad , then $\times 10=$ \qquad
2. $468 \times 5=$ \qquad : first, $1 / 2$ of $468=$ \qquad , then $\times 10=$ \qquad

- After some practice you can do these in your head! Cool party trick.

