\qquad

The Sevens are probably my favourite set of times-tables, they're brimming with interesting numbers! When dividing by 7 , the quickest way by far is to know your basic facts, back to front. Once that's in place we can use our family of facts to quickly sort out $\div 7$ problems. Remember, to figure out the $7 \times$ table in the first place you can split 7 into $5+2(7 \times 2=? ? 5 \times 2=10+2 \times 2=4,10+4=14)$
E.g. What is $\mathbf{1 4} \div \mathbf{7}$? We know that $\mathbf{2 x} \mathbf{7 = 1 4}$, so using the 'family' we know $14 \div 7=\mathbf{2}$

Try these ones to build up your division basic facts:

1. $7 \times 6=$ \qquad So __ $\div 7=6$
and
2. $7 \times 4=$ \qquad So $\div 7=4$
and
\qquad $\div 6=7$
3. $7 \times 10=$ \qquad So \qquad $\div 7=10$
and
\qquad $\div 4=7$
4. $7 \times 7=$ \qquad So __ $\div 7=7$
and

- $\div 10=7$

5. $7 \times 5=$ \qquad So __ $\div 7=5$
and
\qquad $\div 7=7$
6. $7 \times 5=$

So __ $\div 7=9$
and
\qquad $\div 5=7$
6. $7 \times 9=$ \qquad So __ $\div 7=11$ and
\qquad $\div 9=7$
7. $7 \times 11=$ \qquad
\qquad -7-3
and
\qquad $\div 11=7$
8. $7 \times 3=$ \qquad So \qquad $\div 7=3$ \square

$$
\div 3=7
$$

and
9. $7 \times 8=$ \qquad So __ $\div 7=8$
and
\qquad $\div 8=7$
10. $7 \times 12=$ \qquad So \qquad $\div 7=12$ and $\div 12=7$

7 is an odd number. How do you make seven
even? Simply subtract the 'S'! ...OK, I'll admit it, I
have a serious bad-joke problem.

Let's practice the basic facts (Yes, I know, but it's worth it, trust me)

| $49 \div 7=_$ | $63 \div 7=_$ | $21 \div 7=$ | $35 \div 7=_$ |
| :--- | :--- | :--- | :--- |$\quad 42 \div 7=\square$.

Next, it's good to know about Dividing with a remainder: E.g $24 \div 7=$? ? Clearly, it doesn't fit. We know that $21 \div 7=3$, and that $28 \div 7=4$. We just choose the one that fits inside 24 (21), then take away 21 from $24(\mathbf{2 4 - 2 1}=\mathbf{3}) \quad$ So $\mathbf{2 4} \div \mathbf{7 = 3 r 3}$... That's 3 times with a remainder of 3 (Which can also be called 3/7). Let's try:

1. $8 \div 7=$ \qquad r^{r}
$7 x$ __ $=7$
2. $16 \div 7=\ldots r$
$7 x \ldots=14$
8-7 = \qquad (remainder)
3. $19 \div 7=\ldots r$ _
$7 x \ldots=14$
4. $29 \div 7=\ldots r$
$7 x \ldots=28$
$7 x \ldots=24$
$7 x \ldots=77$
5. $80 \div 7=$ __r_
$7 x \ldots=21$
16-14 = \qquad (r)

19-14 = \qquad (r)

29-28 = \qquad (r)

26-24 = \qquad (r)

80-77 = \qquad (r)

27-21 = \qquad (r)

37-35 = \qquad (r)
68-63 = \qquad (r)
9. $68 \div 7=\ldots r$ _
$7 x$ = 35
\qquad (r)
$7 x$ __ $=63$
$7 x$ __ $=49$
$50-49=\ldots \quad(r)$
\qquad
Nastier divided by $\mathbf{7}$ problems: We can use a combination of our basic facts and place value to figure out some of the very large or very small divided-by problems.
E.g. We know that $7 \times 8=56$ and naturally $56 \div 7=8$. So then $\mathbf{5 6 0} \div 7=\mathbf{8 0}$ and $5.6 \div 7=\mathbf{0 . 8}$ Cool! With decimal numbers, watch out that you shift the place value enough times. Say if you get $5.6 \div 0.7$, the value will shift twice and you'll end up with a whole number again: $\mathbf{5 . 6} \div \mathbf{0 . 7} \mathbf{= \mathbf { 8 }}$ (there are eight 0.7 s in 5.6 - true)

1. $63 \div 7=$ \qquad $6.3 \div 7=$ \qquad $6300 \div 7=$ \qquad
2. $49 \div 7=$ \qquad $490 \div 7=$ \qquad $4.9 \div 7=$ \qquad $490000 \div 7=$ \qquad
3. $35 \div 7=$ \qquad $350 \div 7=$ \qquad $3.5 \div 7=$ \qquad $3.5 \div 0.7=$ \qquad
4. $28 \div 7=$ \qquad $280 \div 7=$ \qquad $2.8 \div 7=$ \qquad $2800 \div 7=$ \qquad
5. $42 \div 7=$ \qquad $420 \div 7=$ \qquad $4.2 \div 7=$ \qquad $4.2 \div 0.7=$ \qquad
6. $84 \div 7=$ \qquad $840 \div 7=$ \qquad $8.4 \div 7=$ \qquad $84000 \div 7=$ \qquad
7. $21 \div 7=$ \qquad $210 \div 7=$ \qquad $2.1 \div 7=$ \qquad $2.1 \div 0.7=$ \qquad
So how do we solve an even trickier one like $546 \div 7=$?? The answer (as it often is) is to split it into smaller easier bits! Hopefully you have had some practice with other times-tables using this method of fast long division:

$$
78
$$

1. Look at numbers that can be divided by 7 , starting on the left. The ' 5 ' in the 100 s column is too small, so go to ' 54 '. (it's actually 54 tens BTW)

$$
7 \longdiv { 5 4 ^ { 5 } 6 }
$$

2. $54 \div 7=7 \mathrm{r} 5 \quad(54-49=5)$ Put the ' 7 ' above on the answer line
3. Put the r 5 in the 1 s column on the left of the 4 . to make ' 56 '
4. $\mathbf{5 6} \div \mathbf{7}=\mathbf{8}$. Put the ' 8 ' in the 1 s place on the answer line - all done! Answer: 78

To see a video of this technique in action, scan the QR code here with your tablet.

Cool 7 fact: $999999 \div 7=142857$ (Ok, where's this going) $1 \div 7=0.142857142857142857142857142857$..

OK, your turn: don't forget to stick in the remainder at the end!

a. $7 \longdiv { 5 6 7 }$
b. $7 \longdiv { 3 1 5 }$
c. $7 \longdiv { 7 2 1 }$
d. $7 \longdiv { 4 7 6 }$
e. $7 \longdiv { 7 8 4 2 }$
f. $7 \longdiv { 9 5 4 5 }$
g. $7 \longdiv { 7 4 8 7 }$
h. $7 \longdiv { 1 0 7 1 }$
i. $7 \longdiv { 8 3 6 8 }$
j. $7 \longdiv { 9 3 4 8 }$
k. $7 \longdiv { 1 8 7 6 }$
I. $7 \longdiv { 5 6 2 5 }$
m. $7 \longdiv { 8 6 5 7 }$
n. $7 \longdiv { 2 7 4 8 }$
o. $7 \longdiv { 1 0 9 6 }$
p. $7 \longdiv { 8 0 0 7 }$

