**Divide by 4.** *Stg E6 x/÷* Name:

By now you have learned how to halve just about any number. This is good, because we can use that to help us divide numbers into 4 equal groups! All we do is chop it in half, then chop that in half again. Simply pimply.

E.g.  $44 \div 4 = ??$  No problem: halve 44, which is 22, then halve again... 11! Ta-dah!

So, now try some for yourself:

1. 
$$24 \div 4 = ??$$
 Think: ½ of  $24 =$ \_\_\_\_\_ then ½ of  $12 =$ \_\_\_\_\_

2. 
$$16 \div 4 = ??$$
 Think: ½ of  $16 = _____$  then ½ of \_\_\_ = \_\_\_\_

3. 
$$48 \div 4 = ??$$
 Think: ½ of  $48 =$ \_\_\_\_\_ then ½ of \_\_\_ = \_\_\_\_

4. 
$$16 \div 4 = ??$$
 Think: ½ of  $16 =$ \_\_\_\_\_ then ½ of \_\_\_ = \_\_\_\_

5. 
$$40 \div 4 = ??$$
 Think: ½ of  $40 = ____$  then ½ of  $___ = ___$ 

6. 
$$8 \div 4 = ??$$
 Think: ½ of  $8 =$  \_\_\_\_\_ then ½ of \_\_\_ = \_\_\_\_

7. 
$$12 \div 4 = ??$$
 Think: ½ of  $12 =$ \_\_\_\_\_ then ½ of \_\_\_ = \_\_\_\_

8. 
$$32 \div 4 = ??$$
 Think: ½ of  $32 =$ \_\_\_\_\_ then ½ of \_\_\_ = \_\_\_\_

9. 
$$20 \div 4 = ??$$
 Think: ½ of  $20 = ____$  then ½ of  $___ = ___$ 

10. 
$$36 \div 4 = ??$$
 Think: ½ of  $36 = _____$  then ½ of \_\_\_ = \_\_\_\_

We can use our family of facts to help us remember these division basics too!

1. 
$$4 \times 3 = 12$$
  $3 \times 4 =$   $12 \div 4 = 3$   $\div 3 = 4$ 

2. 
$$4 \times 5 =$$
 \_\_  $\div 4 = 5$  \_\_  $\div 5 = 4$ 

3. 
$$4 \times 7 =$$
  $7 \times 4 =$   $\div 4 = 7$   $\div 5 = 7$ 

4. 
$$4 \times 9 =$$
  $9 \times 4 =$   $\div 9 = 4$ 

5. 
$$4 \times 11 =$$
  $11 \times 4 =$   $\div 4 = 11$   $\div 11 = 4$ 

7. 
$$4 \times 6 =$$
 \_\_  $\div 6 = 4$ 

Q. Which tables do you not have to learn?

A. Dinner tables. That's not even funny.

## Divide by 4. Stg $6x/\div$

Name: \_\_\_\_\_

We have learned that to divide numbers by 4, we can halve, then halve again. *Does this still work for bigger numbers?* You bet your wifi-password it does! It works especially well with multiples of 4 no matter how big they are. Let's start with these:

**E.g. 516**  $\div$  **4** = ??? Half of 516 is 258. Then half of 258 is  $129 - \text{so } 516 \div 4 = 129!$ 

1. 
$$136 \div 4 = ??$$

2. 
$$224 \div 4 = ??$$

3. 
$$148 \div 4 = ??$$

4. 
$$428 \div 4 = ??$$

5. 
$$616 \div 4 = ??$$

We can also split the big numbers up in a different way. We can use the fact that any 100s number divided by four is a multiple of 25 (because 100 divided by 4 is 25) and 1000s divided by 4 will be sets of 250.

432

4

$$200 \div 4 = 50$$

a.

$$300 \div 4 = 75$$

$$2000 \div 4 = 500$$

87

Can we divide tiny little numbers into 4 parts too? Why yes. Yes we can.

We can use our old friend 'place value' to help us quickly deal with decimal numbers.

E.g. **2.4** ÷ **4** = **??** We know  $24 \div 4 = 6$ . 2.4 is 10 times smaller than 24. So  $2.4 \div 4 = 0.6$ 

1. 
$$3.6 \div 4 = ??$$

2. 
$$0.8 \div 4 = ??$$

3. 
$$1.2 \div 4 = ??$$

4. 
$$2.8 \div 4 = ??$$

5. 
$$4.4 \div 4 = ??$$

Tip: In the same way that  $100 \div 4$  is 25, it's useful to know that  $1 \div 4 = 0.25$  or  $\frac{1}{4}$  of 1 = 0.25 (same thing).

Ok, what if I know my divided by 4 basic facts, but want a more efficient way of dividing big numbers by 4? Aha! I think you are ready for a standard division technique! Ask your teacher to show you how to do 'long-division'. You'll learn cool things like how to divide a number with a 'remainder'. (Not to be confused with a reindeer).

