Divide by 4. $\operatorname{Stg} E 6 x / \div$ Name: \qquad
By now you have learned how to halve just about any number. This is good, because we can use that to help us divide numbers into 4 equal groups! All we do is chop it in half, then chop that in half again. Simply pimply.
E.g. $\mathbf{4 4} \div \mathbf{4}=$?? \quad No problem: halve 44 , which is 22 , then halve again... 11! Ta-dah! So, now try some for yourself:

1. $24 \div 4=$?? \quad Think: $1 / 2$ of $24=$ \qquad then $1 / 2$ of $12=$ \qquad
2. $16 \div 4=$?? Think: $1 / 2$ of $16=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
3. $48 \div 4=$?? Think: $1 / 2$ of $48=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
4. $16 \div 4=$?? Think: $1 / 2$ of $16=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
5. $40 \div 4=$?? Think: $1 / 2$ of $40=$ \qquad then $1 / 2$ of \qquad = \qquad
6. $8 \div 4=$?? Think: $1 / 2$ of $8=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
7. $12 \div 4=$?? Think: $1 / 2$ of $12=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
8. $32 \div 4=$??

Think: $1 / 2$ of $32=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
9. $20 \div 4=$? ?

Think: $1 / 2$ of $20=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
10. $36 \div 4=$??

Think: $1 / 2$ of $36=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
We can use our family of facts to help us remember these division basics too!

We have learned that to divide numbers by 4, we can halve, then halve again. Does this still work for bigger numbers? You bet your wifi-password it does! It works especially well with multiples of 4 no matter how big they are. Let's start with these:
E.g. $516 \div \mathbf{4}=$??? Half of 516 is 258 . Then half of 258 is $129-$ so $516 \div 4=\mathbf{1 2 9}$!

1. $136 \div 4=$?? \quad Think: $1 / 2$ of $136=$ \qquad then $1 / 2$ of $68=$ \qquad
2. $224 \div 4=$??

Think: $1 / 2$ of $224=$ \qquad then $1 / 2$ of \qquad $=$ \qquad
3. $148 \div 4=$??

Think: $1 / 2$ of $148=$ \qquad then $1 / 2$ of \qquad = \qquad
4. $428 \div 4=$??

Think: $1 / 2$ of $428=$ \qquad then $1 / 2$ of \qquad = \qquad
5. $616 \div 4=$? ?

Think: $1 ⁄ 2$ of $616=$ \qquad then $1 / 2$ of \qquad = \qquad

We can also split the big numbers up in a different way. We can use the fact that any 100 s number divided by four is a multiple of 25 (because 100 divided by 4 is 25) and 1000 s divided by 4 will be sets of 250 .
E.gs: $100 \div 4-=25$

$$
200 \div 4=50
$$

$300 \div 4=75$
$2000 \div 4=500$

| E.g. | 348 |
| ---: | ---: | ---: |
| \div | 4 |
| $1 / 4$ of 48 | $=12$ |
| $+1 / 4$ of 300 | $=75$ |
| | 87 |

| a. | | 432 |
| :---: | ---: | ---: | ---: |
| | \div | 4 |
| $1 / 4$ of 32 | $=$ | - |
| $+1 / 4$ of 400 | $=$ | - |
| | $=$ | - |

| b. | | 652 |
| :---: | ---: | ---: | ---: |
| | \div | 4 |
| $1 / 4$ of 52 | $=$ | 13 |
| $+1 / 4$ of 600 | $=$ | - |
| | $=$ | - |

Can we divide tiny little numbers into 4 parts too? Why yes. Yes we can.

| c. | 2428 | |
| ---: | ---: | ---: | ---: |
| | \div | 4 |
| $1 / 4$ of 28 | $=$ | - |
| $+1 / 4$ of 400 | $=$ | - |
| $+1 / 4$ of 2000 | $=$ | |
| | | |

We can use our old friend 'place value' to help us quickly deal with decimal numbers.
E.g. $\mathbf{2 . 4} \div \mathbf{4}=$? ? We know $24 \div 4=6.2 .4$ is 10 times smaller than 24 . So $2.4 \div 4=\mathbf{0 . 6}$

1. $3.6 \div 4=$??
2. $0.8 \div 4=$??
3. $1.2 \div 4=$??
4. $2.8 \div 4=$? ?
5. $4.4 \div 4=$??

Think $36 \div 4=$ \qquad
Think $8 \div 4=$ \qquad
Think $12 \div 4=$ \qquad
Think $28 \div 4=$ \qquad
Think $44 \div 4=$ \qquad

So $3.6 \div 4$ must be \qquad So $0.8 \div 4$ must be \qquad So $1.2 \div 4$ must be \qquad
So $2.8 \div 4$ must be \qquad
So $4.4 \div 4$ must be \qquad
Tip: In the same way that $100 \div 4$ is 25 , it's useful to know that $\mathbf{1 \div 4 = 0 . 2 5 ~ o r ~} 1 / 4$ of $1=0.25$ (same thing).
Ok, what if I know my divided by 4 basic facts, but want a more efficient way of dividing big numbers by 4? Aha! I think you are ready for a standard division technique! Ask your teacher to show you how to do 'long-division'. You'll learn cool things like how to divide a number with a 'remainder'. (Not to be confused with a reindeer).

