\qquad
Ok, by now you've learned how to halve (that is divide by 2) basic numbers. Like half of 8 is 4 , half of 12 is 6 and so on. We can easily halve simple, even numbers right? (Good, 'coz you're gonna need that mad skill). What about tricky odd numbers, or tricky large numbers? Once again, the answer lies in splitting it up in to small easy chunks. Let's start with odd numbers. E.G. What is half of 17 ? (You can write this question as $1 / 2 \times 17$, or $17 \times$ 0.5 , or $17 \div 2$ whatever floats your boat) The first thing you'll notice is that you can't chop odd numbers into two whole, even parts. Bummer. Not to worry, just take 1 off, and split that first. (Any odd number becomes even when you take 1 away). So now you've got 0.5 and 0.5 , or $1 / 2$ and a $1 / 2$ plus 16 . Sweet, now just chop 16 in half - that's 8 ! Then glue on your half from the 1 and you get a total of 8.5 or $81 / 2$.

So $1 / 2$ of 17 = 8.5 - Seems easy enough, so let's try a few:

1. $1 / 2 \times 15=$?? Think: $\quad 15=14+1 . \quad$ So $1 / 2$ of $14=7+0.5=7.5$
2. $1 / 2 \times 19=?$? \quad Think: $\quad 19=18+1 . \quad$ So $1 / 2$ of $18=\ldots+0.5=$
3. $1 / 2$ of $23=$?? Think: $23=22+1$. So $1 / 2$ of $22=\ldots+1 / 2=\ldots$
4. $1 / 2 \times 39=$? ? Think: $39=38+1$. So $1 / 2 \times 38=$ \qquad $+0.5=$ \qquad
5. $1 / 2 \times 27=$?? Think: $27=26+1$. So $1 / 2$ of $26=$ \qquad $+1 / 2=$ \qquad
6. $1 / 2$ of $33=$? ? Think: $33=32+1$. So $1 / 2$ of $32=\ldots+0.5=\ldots$

Alright; now for big tricky numbers. Actually you do a similar trick. Take a number like 90 it's a little nasty to halve right? First knock off 10 - you know half of $\mathbf{1 0}$ is $\mathbf{5}$ so there's your 'ones' column sorted. Then just halve 80 - which you know using place value is 40 . Stick 'em back together and you get a total of 45 . So, $1 / 2$ of $90=45$.

1. $1 / 2$ of $70=$?? \quad Think: $70=60+10$. So $1 / 2$ of $60=30+5=35$
2. $1 / 2$ of $110=$?? \quad Think: $110=100+10$. So $1 / 2$ of $100=$ \qquad $+5=$ \qquad
3. $1 / 2$ of $170=$? ?

Think: $170=160+10$. So $1 / 2$ of $160=$ \qquad $+5=$ \qquad
4. $1 / 2$ of $50=$??

Think: $50=40+10$. So $1 / 2$ of $40=$ \qquad $+5=$ \qquad
5. $1 / 2$ of $130=$? ?

Think: $\quad 130=120+10$. So $1 / 2$ of $120=$ \qquad $+5=$ \qquad
6. $1 / 2$ of $190=$? ?

Think: $\quad 190=180+10$. So $1 / 2$ of $180=$ \qquad $+5=$ \qquad
7. $1 / 2$ of $230=? ?$

Think: $230=220+10$. So $1 / 2$ of $220=$ \qquad $+5=$ \qquad
8. $1 / 2$ of $250=? ?$

Think: $250=240+10$. So $1 / 2$ of $240=$ \qquad $+5=$ \qquad
9. $1 / 2$ of $270=? ?$

Think: $270=260+10$. So $1 / 2$ of $260=$ \qquad $+5=$ \qquad
$10.1 / 2$ of $310=$??
Think: $310=300+10$. So $1 / 2$ of $300=$ \qquad $+5=$ \qquad
\qquad
Right-o, now it's time to get serious. What's a cool way to chop obnoxiously nasty numbers in half? There are a few cool tricks, but possibly the easiest is to use a version of a good old-fashioned multiplication algorithm (groan). Remember - keep your columns!
E.g. What is $1 / 2$ of $\mathbf{2 3 5 4}$? (or $\mathbf{2 3 5 4 \times 0 . 5}$ or $\mathbf{2 3 5 4 \div 2}$ - same thing)

E.g.	2354	a.	4768	b.	3687
	0.5	X	0.5	X	0.5
$1 / 2$ of $4=$	2	$1 / 2$ of $8=$	4	$1 / 2$ of $7=$	3.5
$1 / 2$ of $50=$	25	$1 / 2$ of $60=$	30	$1 / 2$ of $80=$	
$1 / 2$ of $300=$	150	$1 / 2$ of $700=$	350	$1 / 2$ of $600=$	
$1 / 2$ of $2000=$	1000	$1 / 2$ of $4000=$	2000	$1 / 2$ of $3000=$	
$($ Adds to) $=$	1177	=		=	

C.	4682	d. 6485		e.	5680
X	0.5	X	0.5	X	0.5
1/2 of $82=$		$1 / 2$ of $5=$		$1 / 2$ of $80=$	
$1 / 2$ of $600=$		$1 / 2$ of $80=$		$1 / 2$ of $600=$	
$1 / 2$ of $4000=$		$1 / 2$ of $400=$		$1 / 2$ of $5000=$	
		$1 / 2$ of $6000=$			
	$=$	$=$		$=$	

Ok, you're ready to go freestyle! Use the space below to work things out - you'll probably figure out some shortcuts on the way!
f. 5432×0.5
g. 46732×0.5
h. 89438×0.5
i. 6864×0.5

The divide by 2 strategy. Stg 6/E7 x/ $\div \quad$ ANSWERS
Right-o, now it's time to get serious. What's a cool way to chop obnoxiously nasty numbers in half? There are a few cool tricks, but possibly the easiest is to use a version of a good old-fashioned multiplication algorithm (groan). Remember - keep your columns!

E.g.	2354	a.	4768	b.	3687
X	0.5	X	0.5	X	0.5
$1 / 2$ of $4=$	2	$1 / 2$ of $8=$	4	$1 / 2$ of $7=$	3.5
$1 / 2$ of $50=$	25	$1 / 2$ of $60=$	30	$1 / 2$ of $80=$	40
$1 / 2$ of $300=$	150	$1 / 2$ of $700=$	350	$1 / 2$ of $600=$	300
$1 / 2$ of $2000=$	1000	$1 / 2$ of $4000=$	2000	$1 / 2$ of $3000=$	1500
=	1177		2384		1843.5

Ok, you're ready to go freestyle! Use the space below to work things out - you'll probably figure out some shortcuts on the way!
f. 5432×0.5
g. 46732×0.5
h. 89438×0.5
i. 6864×0.5
= 2716
$=23366$
$=44719$
$=3432$

