\qquad
Divide by 10? What, you must be kidding, sounds really hard! Nah, not at all. Have a look at this: In the number 30 you can imagine it as 3 sets of 10:

\(\left.\begin{array}{l}=10 \\
=10 \\

=10\end{array}\right]\)| 30 so, when you $\div 10$, you are saying how |
| :---: |
| many 10 s fit in the whole set. |

This bit shows how many sets you've got. $30 \div 10=3$
What you'll notice now is that ' $\mathbf{3}$ ' and ' $\mathbf{3 0}$ ' look similar. Thirty just has a zero glued on to it. This is handy because to find out how many groups of 10 are in a big number we can unglue that zero. Try some - you can circle a set to help figure out how many sets of 10 you have:

Here are 40 boxes. They need to be sent to 10 different places. How many boxes go to each place? $40 \div 10=$ \qquad

Here are 50 police dogs. They need to be trained in 10 different cities. How many dogs go to each city? $50 \div 10=$ \qquad

Here are Mrs Denne's 20 pet scorpions. She wants to terrify 10 kids in her class. How many scorpions can she put in each of their desks? $20 \div 10=$ \qquad

ㄴำ

In this game of snap there are 60 cards. There are 10 players. How many cards do they get each? $60 \div 10=$ \qquad

OK, let's review. To chop a big number into sets of 10 we can find a clue in the big number. 30 has 3 tens, 20 has __ tens and so on. We don't really need to see the sets anymore though - we can just use the number. Have a go:
a. $70 \div 10=$ \qquad b. $90 \div 10=$ \qquad c. $50 \div 10=$ \qquad
d. $10 \div 10=$ \qquad e. $40 \div 10=$ \qquad f. $30 \div 10=$ \qquad
g. $20 \div 10=$ \qquad h. $100 \div 10=$ \qquad
j. $\quad 80 \div 10=$ \qquad j. $110 \div 10=$ \qquad
m. $190 \div 10=$
n. $150 \div 10=$ \qquad
i. $60 \div 10=$ \qquad
l. $130 \div 10=$ \qquad
p. $170 \div 10=$ \qquad
q. $200 \div 10=$ \qquad
o. $120 \div 10=$ \qquad
r. $180 \div 10=$

Q: What did one maths book say to the other?
A: Don't bother me I've got my own problems!

Divide by 10 using place value.

\qquad
When we need to divide something by 10 , we can go back to our old friend - place value! Understanding place value allows us to divide by 10 , or 100 or even 1000 without even having to 'do' much maths! (Yay, I can let my poor brain have a rest!) True, but you do need to know what's going on. Say if you are asked to divide $\mathbf{7 0}$ by $\mathbf{1 0}$ ($\mathbf{7 0} \div \mathbf{1 0}$, how many $\mathbf{1 0}$ sin $\mathbf{7 0}$, or how many groups of $\mathbf{1 0}$ are in $\mathbf{7 0}$ - all the same question). You might be tempted to say 'take away the zero!' to get the answer. But if you take nothing away from something, you still have the same something right? So what is really happening?

Alright, I'll tell you. The number is shifting it's place values - in 70, the 'ones' place is being kept by a zero (that's its job in this case). When we divide that big number we're 'downgrading' it, so that each number is 10 times smaller, and so now fits in the column for smaller values. The zero that was place holding in the ones column, is now holding a place in the tenths column, and looks like 7.0 - we usually don't show the 'point zero' though, it's not really needed. E.g. $70 \div 10=7$,

There is a bit of a trick though - you must not change the order of your original number!
E.g. $4320 \div 10=432, \quad 20050 \div 10=2005 \quad$ Have a try for yourself:

1. $90 \div 10=$ \qquad .
2. $80 \div 10=$ \qquad .
3. $60 \div 10=$ \qquad .
4. $30 \div 10=$ \qquad .
5. $120 \div 10=$ \qquad .
6. $340 \div 10=$ \qquad .
7. $630 \div 10=$ \qquad .
8. $780 \div 10=$ \qquad .
9. $910 \div 10=$ \qquad .
10. $880 \div 10=$ \qquad .
\qquad .
11. $470 \div 10=$
12. $560 \div 10=$ \qquad .
$900 \div 10=$ \qquad .
$9000 \div 10=900$
$800 \div 10=80$.
$8000 \div 10=$ \qquad
$600 \div 10=$ \qquad .
$6000 \div 10=$ \qquad
$300 \div 10=$ \qquad .
$3000 \div 10=$ \qquad $1200 \div 10=$ \qquad .
$12000 \div 10=$ \qquad
$3400 \div 10=$ \qquad .
$34000 \div 10=$ \qquad
$6300 \div 10=$ \qquad .
$63000 \div 10=$ \qquad
$7800 \div 10=$ \qquad .
$78000 \div 10=$ \qquad $9100 \div 10=$ \qquad . $91000 \div 10=$ \qquad $8800 \div 10=$ \qquad . $88000 \div 10=$ \qquad $4700 \div 10=$ \qquad . $47000 \div 10=$ \qquad
$5600 \div 10=$ \qquad .
$56000 \div 10=$ \qquad

Ok, but what if the number you start with has a value in the ones? No worries:

$12 \div 10=1.2$
$304 \div 10=$ \qquad
$697 \div 10=$ \qquad
$321 \div 10=$ \qquad
$56 \div 10=$ \qquad
$762 \div 10=$ \qquad
$809 \div 10=$
$419 \div 10=$ \qquad
$84 \div 10=$ \qquad
$7892 \div 10=$ \qquad
$559 \div 10=$ \qquad
$7509 \div 10=$ \qquad
\qquad
We've learned that dividing by 10 is pretty easy right? (Yep, with you there) So, naturally the next question is; 'can we use the same trick for bigger or more complicated numbers?'
Answer: Y'all are darn-tootin' y'can! (That's old-west for 'yes')
As always with place value, the main trick is to keep the number in order. Especially when you are dividing or multiplying by $10 \mathrm{~s}, 100 \mathrm{~s}$, 1000s or bigger.

Let's have a bit of a go with some easy ones to start with:

E.g $\quad 1234 \div 10=123.4 \quad 1234 \div 100=12.34$
$1234 \div 1000=1.234$

1. $2435 \div 10=$ \qquad $2435 \div 100=$
$2435 \div 1000=$ \qquad
2. $2089 \div 10=$ \qquad $2089 \div 100=$ \qquad $2089 \div 1000=$ \qquad
3. $6507 \div 10=$ \qquad $6507 \div 100=$ \qquad $6507 \div 1000=$ \qquad
4. $5923 \div 10=$ \qquad
$5923 \div 100=$ \qquad
$5923 \div 1000=$ \qquad
5. $9890 \div 10=$ \qquad $9890 \div 100=$
$9890 \div 1000=$ \qquad
6. $1000 \div 10=$ \qquad
$1000 \div 100=$ \qquad

Tip: count the zeros in the 'divisor' (the number you're dividing by) and just shift your place value that many times. E.g. divide by $\mathbf{1 0 0}$? Slide the number along $\mathbf{2}$ places to the right!

You can use this technique with small decimal numbers too. You might get asked something like $5.6 \div 100$. You can use the same trick - just slide it along two places to the right. $5.6 \div 100=0.056$ - just remember to put a zero in the ones column as a place holder (yes, we do really need to)

Divide by 10 using place value.

Stg E7 x / \div Name: \qquad
What about super tiny numbers? Numbers that make dust look big. The distance between a flea's whiskers. Microscopic stuff? Have a think about bacteria for example. Most bacteria are between 0.5 of a micrometre ($1 / 1000^{\text {th }}$ of a millimetre) to 2 microns long. Check out the picture: Escherichia coli bacteria using an electron microscope showing just $\mathbf{2}$ micrometres. Invisible to the naked eye. $\mathbf{2}$ micrometres (microns in the
 old language) $\mathbf{= 0 . 0 0 0 0 0 2} \mathrm{m}$, or we could say $\mathbf{2 \times 1 0 ^ { - 6 }}$
Decimal numbers can show us extremely accurate fractions. Have a look at these:

prefix		decimal	Scientific notation
deci	d	0.1	10^{-1}
centi	c	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10^{-6}
nano	n	0.000000001	10^{-9}
pico	p	0.000000000001	10^{-12}
femto	f	0.000000000000001	10^{-15}

Some of these you are familiar with. We use
centimetres and millimetres when
measuring things all the time. This chart
shows the names for even smaller parts. The
'scientific notation' is a shorter way to write
very small fractions that would have a lot of
zeroes otherwise. (It looks like a negative
number, but in this case shows a decimal)

Teeny tiny numbers research assignment: You won't be able to measure any of these things yourself. See if you can get access to the internet to find the answers to these unusually small problems. Make sure all of your answers are metric!

1. What is the width of a human hair \qquad
2. The weight of a dust mite \qquad
3. The length of a flu virus \qquad
4. The volume of blood in a flea \qquad
5. The distance between the peaks of an ultraviolet light wave \qquad
6. The weight of a single grain of sand \qquad
7. The thickness of a layer of paint \qquad
8. The weight of 1 litre of helium at 20 degrees celcius \qquad
9. The weight of 1 litre of oxygen at 20 degrees celcius \qquad
10. The length of the world's smallest insect \qquad
11. The length of a human DNA molecule \qquad
12. The weight of a single gold atom \qquad
13. The width of a hair on the leg of a daddy-long-legs spider \qquad
14. The length of the smallest thing visible to the human eye \qquad
15. The length of the smallest thing visible to an electron microscope \qquad
16. The weight of a mustard seed \qquad
17. The gap in the world's smallest electric switch \qquad
18. The fastest ever camera shutter speed \qquad
19. The amount of time light takes to travel 1 kilometre \qquad
20. The thickness of 'bible paper' \qquad
