Early Level 1: Stage 2—3 Counting All

I can skip count

forwards and backwards to 20 in twos and fives.

Multiplication \& Division

I can solve simple multiplication and division problems by counting all the objects.
e.g. 4 groups of $2 \ldots$

Level 1-Stage 4 Advanced Counting

Multiplication \& Division

I can solve multiplication problems using skip counting. e.g. 4×2 as 2, 4, 6, 8

I can solve division

 problems using: skip counting, fair sharing, using my doubles or halves to 20.
Level 2—Stage 5 Early Additive

Multiplication \& Division

I can solve multiplication and division problems using known simple multiplication facts or repeated halving.

$$
\text { eg. } 20 \div 4=\square
$$

I can solve multiplication and division problems using repeated addition or known addition facts.
eg. $4 \times 6=(6+6)+(6+6)$
$=12+12$
$=24$

I know x 2 , x 5 and x 10 multiplication facts and matching division facts.

Level 3—Stage 6 Advanced Additive

Multiplication \& Division

I can solve multiplication and division problems by using known facts and mental strategies to derive the answers.

Place value
$13 \times 5=(10 \times 5)+(3 \times 5)=65$

Rounding and compensating
$3 \times 18=3 \times 20-6$

Doubling and halving
$4 \times 8=2 \times 16=32$

Reversibility
$63 \div 9$ as $9 \times \square=63$

I know multiplication facts to x10 tables and some matching division facts.

I know multiplication facts with tens, hundreds and thousands.

Reference: Ministry of Education (2008). The Number Framework—Book 1

Level 4—Stage 7

Advanced Multiplicative

Multiplication \& Division

I can choose appropriately from a range of mental strategies to solve multiplication and division problems.

Possible strategies for 24×6
Place value partitioning $(20 \times 6)+(4 \times 6)$

Rounding and compensating 25×6 - 6

Doubling and halving $24 \times 6=12 \times 12$

Vertical Algorithm I can explain the place value partitioning involved

Reference: Ministry of Education (2008). The Number Framework—Book 1 Created by Julie Roberts, 2011.

I know factors of numbers to 100 including prime numbers.

I know square numbers to 100 and the responding square roots.

Possible strategies for $201 \div 3$ by using reversibility
Place value partitioning (3×60) $+(3 \times 7)$ so 67 cans
Rounding and compensating (3×70) - (3×3) so 67 cans

Divisibility
33 threes in 100 with 1 left over so $33+33+1=67$ cans

Vertical Algorithm I can explain the place value partitioning involved

I know division facts up to $x 10$ tables.

I know common multiples of numbers to 10 .

I know divisibility rules for $2,3,5,9,10$

Multiplication \& Division

I can choose appropriately from a range of mental strategies to solve problems that involve multiplication of fractions and decimals.

I can choose appropriately from a range of mental strategies to solve division problems with decimals.

For example;
$3.6 \times 0.75=3 / 4 \times 3.6=2.7$ (Conversion and commutativity)

I know simple powers of numbers to 10 .

I know fractions-decimalpercentage conversions for given fractions and decimals.

I know common factors of numbers to 100 , including the highest common factor.

For example;
$7.2 \div 0.4$ as $7.2 \div 0.8=9$, so $7.2 \div 0.4=18$
(Doubling and halving with place value)

I know divisibility rules for 2,3 , $4,5,6,8$, and 10.

I know least common multiples of numbers to 10 .

