\qquad
Them's the rules buddy! Is everyone always telling you what to do and what the rules are? Well, here's your chance to make the rules for a change. Often when we see a pattern in maths, we can describe it with a short rule that works no matter how big (or small) the pattern gets.

For example, if you offer lollies to your little sister, you always make sure you eat 2 for every 1 she gets. So if she ate 3 , you would take 6 . Your 'rule' is 1 for her, 2 for me. If you were to write that in maths language you might say ' m ' = the amount of lollies I get, ' s ' is the amount your sister gets. So $\mathbf{m}=\mathbf{(s \times 2)}$. In algebra you don't even need to put ' $\times 2$ ' - just put the s right next to the 2 and it means that same thing. So, $\mathbf{m}=\mathbf{2 s}$. If you always sneak an extra lolly before she even sees the bag, you can even put that in the rule! Look: $\mathbf{m}=\mathbf{2 s}+1$

Let's try the rule:

- You find out that yesterday your sister ate 4 lollies while you were washing the dog. - How many will you grab to keep your rule? Hmm. Well, to find ' m ' go 2×4 (sister's lollies) $+1=$ \qquad
- Ok, by yourself this time: Your sister snuck into the pantry and gobbled 6 lollies! How many will you scarf to keep the rule? \qquad
- OK, slow down there cowboy/girl - if your sister eats any more sweets, you may have to change your rule - imagine if she ate 10 lollies! You'd chomp back \qquad in response.

The other results would be wicked sore guts and a trip to the dentist!

Alright, see if you can make a rule for these stories: (Don't worry about writing in 'maths code' though)

1. My sister is 3 years younger than me. I am 11 now, so she is $(11-3) 8$ years old. What rule can I use to figure out her age, no matter what my age is? \qquad
2. Your friend Rupert is mad into science. He's been busy growing disgusting bacteria in some plastic dishes. Here's a chart that shows it's growth:

Day 1

Day 4

How many squares would there be on Day 5? \qquad . How about Day 9 ? \qquad
So, what is the rule for this bacteria growth? \qquad
3. Your mum insists that you always have at least $\$ 15.00$ in your bank account. You also get $\$ 5.00$ every week for pocket money put into your account. How much money is in the bank after $\mathbf{3}$ weeks?

What is the rule you can use to figure the money for any week? \qquad

